Intrinsic Ultracontractivity and Conditional Gauge for Symmetric Stable Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic Ultracontractivity, Conditional Lifetimes and Conditional Gauge for Symmetric Stable Processes on Rough Domains

For a symmetric α-stable process X on Rn with 0 < α < 2, n ≥ 2 and a domain D ⊂ Rn, let LD be the infinitesimal generator of the subprocess ofX killed upon leaving D. For a Kato class function q, it is shown that LD + q is intrinsic ultracontractive on a Hölder domain D of order 0. This is then used to establish the conditional gauge theorem for X on bounded Lipschitz domains in Rn. It is also ...

متن کامل

Intrinsic Ultracontractivity for Non-symmetric Lévy Processes

Recently in [17, 18], we extended the concept of intrinsic ultracontractivity to nonsymmetric semigroups and proved that for a large class of non-symmetric diffusions Z with measure-valued drift and potential, the semigroup of ZD (the process obtained by killing Z upon exiting D) in a bounded domain is intrinsic ultracontractive under very mild assumptions. In this paper, we study the intrinsic...

متن کامل

Intrinsic Ultracontractivity of Non-symmetric Diffusion Semigroups in Bounded Domains

We extend the concept of intrinsic ultracontractivity to non-symmetric semigroups and prove the intrinsic ultracontractivity of the Dirichlet semigroups of nonsymmetric second order elliptic operators in bounded Lipschitz domains.

متن کامل

Ergodicity for Time Changed Symmetric Stable Processes

In this paper we study the ergodicity and the related semigroup property for a class of symmetric Markov jump processes associated with time changed symmetric α-stable processes. For this purpose, explicit and sharp criteria for Poincaré type inequalities (including Poincaré, super Poincaré and weak Poincaré inequalities) of the corresponding non-local Dirichlet forms are derived. Moreover, our...

متن کامل

A Functional Lil for Symmetric Stable Processes

A functional law of the iterated logarithm is obtained for symmetric stable processes with stationary independent increments. This extends the classical liminf results of Chung for Brownian motion, and of Taylor for such remaining processes. It also extends an earlier result of Wichura on Brownian motion. Proofs depend on small ball probability estimates and yield the small ball probabilities o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1997

ISSN: 0022-1236

DOI: 10.1006/jfan.1997.3104